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These methods use an optimization algorithmor heuristi
 to improve the quality of the ele-ments adja
ent to verti
es being repositioned. Themost 
ommonly used mesh-smoothing te
hniqueis Lapla
ian smoothing, whi
h relo
ates a singlepoint to the geometri
 
enter of its adja
ent ver-ti
es. This te
hnique is 
omputationally inexpen-sive and simple to implement, but it 
an produ
emeshes with invalid or poor-quality elements [11℄.To address these problems, resear
hers have devel-oped optimization-based methods that guaranteemesh quality improvement. These methods areformulated in terms of the design variables (oneor more verti
es to be repositioned), an improve-ment goal (the quality metri
, obje
tive fun
tion,and 
onstraints), and the algorithm used to 
al
u-late an optimal solution.Most work in optimization-based smoothing repo-sitions one vertex at a time. A number of sweepsover the adjustable verti
es are performed toa
hieve overall improvement in the mesh. Thequality metri
s optimized range from a priori geo-metri
 
riteria [27, 12℄ and algebrai
 quality met-ri
s [16, 17℄ to a posteriori metri
s that minimizesolution error indi
ators [2℄. An obje
tive fun
-tion is then de�ned based on a quality metri
 tomeet various improvement goals. For example, toimprove the average quality of mesh elements, oneuses an `1 or `2 norm [17℄; and to improve theworst quality element, one uses an `1 norm [12℄.The optimization methods employed in
lude 
on-jugate gradient te
hniques [19℄, simplex methods[13℄, and a
tive-set algorithms [12℄.Similar te
hniques 
an be used to reposition manyverti
es simultaneously. However, a solution tothe resulting nonlinear, 
onstrained optimizationproblem is more diÆ
ult to 
al
ulate as the num-ber of design variables in
reases. Several meth-ods have been used to solve this problem for bothstru
tured and unstru
tured grids.For stru
tured mesh generation using dire
t op-timization te
hniques [3, 6℄ resear
hers have em-ployed 
onjugate gradient [26℄ and trun
ated New-ton [9℄ methods. Several strategies have been in-vestigated for unstru
tured meshes. For example,White and Rodrigue use a potential energy fun
-tion de�ned on the grid nodes to push them awayfrom ea
h other by using a steepest des
ent opti-mization pro
edure [30℄. The method in
orporatesedge swapping, retriangularization, and Lapla
iansmoothing to a
hieve a �nal mesh. Amezua et al.developed a length 
onstraint method in whi
h auser-de�ned density fun
tion determines the ideallength of elements within a given region [1℄. Anerror fun
tion providing the di�eren
e between theideal and a
tual edge lengths for a pat
h of nodes

is de�ned and minimized by using a quasi-Newtonapproa
h. Parthasarthy and Kodiyalam optimizethe `2 norm of the element aspe
t ratios and 
on-strain ea
h element to maintain positive volume[25℄. The minimization is performed by using amodi�ed feasible dire
tion method to �nd a sear
hdire
tion at ea
h iteration. Knupp optimizes the
ondition number of tetrahedral and hexahedralelement meshes using a 
onjugate gradient method[19℄. Other resear
hers have used steepest des
ent[31℄, quadrati
 programming [7℄, and 
onjugategradients [15℄ to solve related problems.While several te
hniques have been advo
ated tosolve the problem of simultaneously repositioningmany verti
es to improve mesh quality, it is im-possible to 
ompare them be
ause di�erent meritfun
tions are used on varying test 
ases. To ad-dress this issue, we 
ondu
ted a formal studyof several existing optimization methods using a
onsistent problem formulation similar to that ofParthasarthy and Kodiyalam [25℄. The problem isdes
ribed in more detail in Se
tion 2. We then 
on-sider eight solvers: six publi
ly available, general-purpose software pa
kages and two methods de-signed spe
i�
ally for the mesh quality improve-ment problem. In Se
tion 3, we give an overviewof the optimization te
hniques used in our study.In Se
tion 4, we present numeri
al results and an-alyze the e�e
tiveness of ea
h solver. In parti
u-lar, we examine the e�e
t of initial mesh qualityon algorithm performan
e and evaluate the abil-ity of the algorithms to solve several two- andthree-dimensional test 
ases. For the most promis-ing algorithms, we study the 
onvergen
e historiesto determine if early termination is an option toredu
e 
omputational 
osts and investigate theirs
alability as problem size in
reases. In Se
tion5, we summarize our �ndings and rank the algo-rithms from most promising to least e�e
tive.2. PROBLEM FORMULATIONMeshes 
an be improved with respe
t to any num-ber of quality metri
s in
luding shape, size, align-ment, solution error, or 
ombinations of these. Tokeep the resear
h reported in this paper of man-ageable size, we investigate the behavior of the op-timization solvers using a shape metri
 and leaveinvestigation of solver behavior using the othertypes of metri
s for future work. Shape metri
sare important be
ause they 
an be used to 
ontrolone of the most important properties of a �niteelement mesh, namely element skew and aspe
tratio. Among the various shape metri
s, we havesele
ted the mean ratio metri
 [22℄. Sin
e a varietyof shape measures have been shown to be equiva-



lent in the sense that all are zero when the tetra-hedral element is 
at and approa
h unity for anequilateral tetrahedron [21℄, it is likely that the be-havior of the optimization solvers in this 
ompari-son is representative of the solver behavior if othershape metri
s were used, but we have not veri�edthis. We further limit our investigation to the op-timization of meshes for the purpose of 
reatingisotropi
 elements. This determines a �xed weightmatrix W in the formulation of the mean ratiobelow. The behavior of the solvers in this studymay di�er when applied to optimize anisotropi
meshes using a di�erent W . However, preliminaryexperiments with the identity weight matrix andFeasNewt algorithm des
ribed in Se
tion 3 indi-
ate a minimal impa
t on performan
e when 
om-pared to the same method with the weight matrixbelow.To de�ne the mean ratio metri
, let � be a tetra-hedral element with vertex 
oordinates x0, x1,x2, and x3, and de�ne a matrix A su
h that thethree edge ve
tors emanating from vertex zeroform the 
olumns of the matrix. That is, A =[x1 � x0; x2 � x0; x3 � x0℄. The mean ratiomeasure is formulated in terms of A as� = 3(�) 23k A k2F ;where � = det(A) and k � kF signi�es the Frobe-nius matrix norm. The mean ratio approa
heszero for nearly 
at elements and is unity for aright-angled tetrahedron.Following the ideas in [11℄, we reformulate themean ratio metri
 proposed in [22℄ so that it at-tains the maximum value for an equilateral tetra-hedron. To do so, we introdu
e a weight matrixW , W = 0� 1 1=2 1=20 p3=2 p3=60 0 p2=p3 1A ;whi
h is formed from the vertex 
oordinates of aunit equilateral tetrahedron. We note that the useof a weight matrix, W , 
reates a 
exible metri
whi
h 
an be referen
ed to any ideal element; forexample, anisotropi
 elements 
ommonly found inboundary layer 
ows.Let T be the matrix de�ned by T = AW�1 sothat T is the identity matrix when the elementis equilateral and � = det(T ). The reformulated

mean ratio measure is then� = 3(� ) 23k T k2F :This measure ranges from zero to unity, with zeroindi
ating a \
at" element and unity an equilat-eral tetrahedron. We note that this measure isequivalent to the weighted 
ondition number mea-sure [18℄.One 
an also derive a weighted mean ratio measurefor triangular elements referen
ed to an equilateraltriangle, � = 2�k T k2F ;where the weight matrix isW = � 1 1=20 p3=2 � :For triangles, the mean ratio measure is identi
alto the 
ondition number of T be
ause for 2 � 2matri
es the Frobenius norm of T�1 equals theFrobenius norm of T divided by the absolute valueof the determinant of T .The simplest `2 obje
tive fun
tion one 
an 
on-stru
t from this measure is formed by taking theinverse mean ratio so that ea
h term in the ob-je
tive fun
tion ranges from unity to in�nity. Bydoing so, we 
reate a \barrier" against mesh in-version. The optimization algorithms presentedin this paper thus seek to �nd the set of free nodepositions (xj; yj ; zj), j = 1; : : : ; J , that minimizeF (: : : ; xj; yj; zj; : : :) =X�k ��1(�k);where the sum extends over all of the elements �kin the mesh. Boundary nodes are assumed to be�xed. The obje
tive fun
tion is nonlinear be
auseit 
onsists of sums of terms of quadrati
 fun
tionsover polynomial fun
tions.We de�ne the feasible region to be the set of nodelo
ations for whi
h all the tetrahedra in the meshhave positive volume, and we assume this region



is nonempty. The resulting optimization problemmin P�k ��1(�k)subje
t to � (�k) � � for all �kwhere � > 0 is suÆ
iently small, is given to theoptimization software along with a feasible pointwhere the 
onstraints are not a
tive. Be
ause allnodes on the boundary of the mesh are �xed, thereare 2VI and 3VI degrees of freedom in the opti-mization problem for two and three-dimensionalmeshes respe
tively, where VI is the number of in-ternal verti
es.The obje
tive fun
tion is 
ontinuous and boundedbelow on the nonempty, 
losed feasible region.Therefore, if the feasible region is also bounded,we 
an assert the existen
e of an optimal solu-tion to the problem. The feasible region will bebounded, for example, if all of the mesh nodes arein a bounded set.3. OPTIMIZATION METHODSThe optimization problem we want to solve is bothnon
onvex and nonlinearly 
onstrained, propertiesthat 
an pose diÆ
ulty for optimization methods.Therefore, we evaluate a variety of algorithms todetermine their robustness and speed. The di�er-en
es among the optimization methods are in howthey handle 
onstraints, 
al
ulate improving di-re
tions, and a

ept new iterates. The algorithms
onsidered in this paper 
an be roughly 
lassi�edinto sequential quadrati
 programming, interior-point, and augmented Lagrangian methods. Werefer the reader to [24℄ for more detailed informa-tion on numeri
al optimization methods.Sequential quadrati
 programming methods iter-atively solve optimization problems 
ontaining aquadrati
 approximation to the obje
tive fun
tionand a linear approximation of the 
onstraints todetermine a dire
tion. Many variations on thistheme exist and have been implemented. We 
on-sider two pa
kages in this 
ategory: FilterSQP andSNOPT. FilterSQP [20℄ uses an exa
t Hessian andin
orporates a trust region to restri
t the lengthof the 
al
ulated dire
tion. If the full dire
tion isnot a

eptable, a new dire
tion is 
al
ulated bytightening the length restri
tion. The a

eptan
e
riterion uses the notion of a �lter and allows non-monotoni
 behavior in the obje
tive fun
tion andnorm of the 
onstraint violation. SNOPT [14℄ usesan approximation to the Hessian and a linesear
h

along the 
al
ulated dire
tion to �nd an improv-ing iterate. Both 
odes use an a
tive set methodto solve the quadrati
 subproblems generated.Interior-point methods reformulate the originalinequality-
onstrained optimization problem intoone 
ontaining only equality 
onstraints by addingsla
k variables and then removing the bounds onthe sla
k variables by in
orporating them into theobje
tive with a log-barrier penalty fun
tion. Forthe problem 
onsidered, the resulting reformula-tion ismin P�k ��1(�k)� �P�k ln s�ksubje
t to � (�k) = s�k + � for all �kwhere s�k are the sla
k variables and � is thepenalty parameter. The reformulation is thensolved for � 
onverging to zero. LOQO andKNITRO are the two 
odes that we 
onsider inthis 
ategory. LOQO [29℄ solves the equality-
onstrained problem using Newton's method to
al
ulate a dire
tion and then �nds a new iter-ate using a linesear
h along the dire
tion. KNI-TRO [5℄ uses a sequential quadrati
 programmingmethod with a trust region to 
al
ulate the so-lution to the equality-
onstrained problem for a�xed �.Augmented Lagrangian methods reformulate theinequality-
onstrained problem into a problemwith only simple bounds by adding sla
k vari-ables and in
orporating the resulting equality 
on-straints into the obje
tive fun
tion. LANCELOT[8℄ is in this 
ategory. It solves the resultingbound 
onstrained problem using a trust-region al-gorithm. MINOS [23℄ is similar in that it uses anaugmented Lagrangian approa
h. MINOS, how-ever, also in
ludes a linearization of the nonlin-ear 
onstraints in the subproblems and solves thelinearly 
onstrained problem with an a
tive setmethod. See [24℄ for a 
omplete des
ription ofaugmented Lagrangian methods.We also 
onsider two methods spe
i�
ally writtento solve the inequality-
onstrained optimizationproblem using known information. In parti
ular,we are guaranteed that we will start from a feasiblepoint and that none of the nonlinear 
onstraintswill be satis�ed as equalities at a solution2. Thelatter 
ondition means that the 
onstraints are re-dundant and 
an be removed, provided we safe-guard the algorithm to prevent element inversions.2Untangling methods 
an be used to 
reate an initiallyvalid mesh [13℄ and � 
an always be 
hosen suÆ
ientlysmall to guarantee the se
ond 
ondition.



The �rst method, NLCG [19℄, uses a Polak-Ribi�erenonlinear 
onjugate gradient method [24℄ with aninexa
t linesear
h. The se
ond, FeasNewt, is afeasible Newton method that solves a quadrati
approximation of the obje
tive fun
tion to �nd adire
tion and performs a linesear
h along this di-re
tion to �nd an improved point. The step sizeis redu
ed whenever an inverted element is found.The dire
tion is 
al
ulated using 
onjugate gradi-ents. The use of 
onjugate gradients is importantbe
ause we want to 
al
ulate either a minimizerof the quadrati
 approximation or a dire
tion ofnegative 
urvature. In most 
ases, the 
onjugategradient method applied to the quadrati
 approx-imation of the obje
tive fun
tion provides su
h di-re
tions. For the test 
ases reported, an appropri-ate dire
tion was always found with the 
onjugategradient method. This approa
h is similar to theDembo and Steihaug method [9℄ for un
onstrainedoptimization.4. NUMERICAL RESULTSBe
ause we want to solve mesh quality optimiza-tion problems in multiple dimensions and for anumber of di�erent geometries, element types, andmesh sizes, our two primary 
on
erns when sele
t-ing an algorithm are robustness and speed. Wealso desire a method that 
onverges monotoni
allyand maintains mesh validity throughout the opti-mization pro
ess. Su
h a method 
an be termi-nated early with a guaranteed improvement in theshape-quality metri
. The method 
hosen shouldalso e�e
tively use the initial point provided as in-put to the optimization routine as it is typi
allynear a solution. This property would also ensuree�e
tive restarts are possible from a partially 
on-verged solution. Finally, be
ause today's meshes
ontain a very large number of elements, the 
ho-sen method should be s
alable with respe
t to thenumber of elements and parallelizable.For this study, the optimization problem was im-plemented in the AMPL modeling language [10℄.In general, modeling languages provide an easyway to algebrai
ally represent optimization prob-lems, 
an deal with large quantities of data, andautomati
ally 
al
ulate the derivative and Hes-sian information needed by the solvers. We 
hoseAMPL be
ause it is 
ommonly used and seven ofthe eight optimization pa
kages 
onsidered in thispaper a

ept problems written with it. We notethat some eÆ
ien
y is lost in fun
tion, gradient,and Hessian evaluations when using a modelinglanguage. For our AMPL implementation of theoptimization problem, hand-
oded versions of thefun
tion, gradient, and Hessian evaluation rou-

tines were more than 10 times faster than thosegenerated by AMPL. However, writing the re-quired derivative and Hessian routines is time 
on-suming and prone to error. Using a 
onsistentapproa
h in their 
omputation allows us to quali-tatively 
ompare the di�erent methods.To test the performan
e of the optimizationmeth-ods with respe
t to our desired 
hara
teristi
s,we developed a series of test 
ases in both twoand three dimensions. We examined algorithm ef-fe
tiveness as the initial mesh quality degrades,robustness on both two- and three-dimensionalmeshes, 
onvergen
e properties, and s
alability.The optimization pa
kages use di�erent termina-tion 
riteria related to feasibility and optimality.In an attempt to have more uniform results, weused a toleran
e of 10�6 for the measures usedby the individual optimization methods. All testswere run on Solaris UltraSPARC workstations.The solvers available in AMPL were run on a 296MHz workstation while NLCG was run on a 400MHz workstation.4.1 E�e
t of Initial Mesh QualityWe �rst evaluate the e�e
tiveness and perfor-man
e of the various optimization methods as thequality of the initial mesh degrades. For this testwe use a simple honey
omb mesh 
ontaining 2040equilateral triangles (see the leftmost mesh in Fig-ure 1) and 
reate a series of in
reasingly poor qual-ity meshes by perturbing the verti
es by a per-
entage of the initial mesh edge length in a ran-dom dire
tion. The perturbed mesh is 
he
ked toensure that there are no inverted elements. Forthis series, the perturbation per
entages are 0, 50,70, 90, and 99. The meshes 
orresponding to 50and 99 per
ent perturbation are shown in the tworightmost meshes in Figure 1, respe
tively. Table1 reports the maximum and average value of themean ratio metri
 for the �ve initial meshes.Table 1. Maximum and average mean ratio metri
for the honey
omb series at the initial meshP MRmax MRavg0 1.00 1.0050 1.44 1.0470 2.10 1.0890 4.58 1.1699 52.2 2.60



Figure 1. The honey
omb mesh seriesSeven optimization solvers were run on this series:the six general-purpose 
odes and the FeasNewtmethod. We are not able to report results forNLCG on the two-dimensional test 
ases as it is
urrently available only for three-dimensional CU-BIT [4℄ meshes. Figure 2 shows the time to solu-tion as a fun
tion of the perturbation per
entage.Be
ause the 
ost of the methods varies dramati-
ally, we plot the results using a logarithmi
 s
alein time. No point is plotted in the graph if thealgorithm was unable to 
al
ulate an optimal so-lution.
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Figure 2. The time to solution for the 7 methods asa fun
tion of the perturbation per
entageThe FeasNewt and KNITRO solvers rea
h the op-timal mesh in the shortest amount of time for thisseries of problems. In both 
ases, the solvers ef-fe
tively use a near-optimal initial point; the zeroperturbation 
ase is not optimal be
ause the ini-tial mesh points were trun
ated to four de
imal

pla
es in the AMPL data �le. The true optimumis obtained in one and two iterations, and 0.61and 1.80 se
onds, respe
tively. As the initial qual-ity of the mesh worsens, these two solvers requirea slowly, monotoni
ally in
reasing amount of timeto �nd the optimal solution. The FeasNewt solveris slightly faster than KNITRO, requiring a max-imum of 5.93 se
onds to solve the hardest of the�ve test 
ases 
ompared with 6.62 se
onds neededby KNITRO.In the se
ond performan
e tier, we pla
e theLANCELOT, LOQO, and FilterSQP solvers.Ea
h of these methods su

essfully solved all ofthe test 
ases but required signi�
antly more timethan the FeasNewt and KNITRO solvers. In par-ti
ular, these methods required 4, 50, and 12 it-erations, and 30.91, 54.44, and 17.28 se
onds tosolve the unperturbed problem, respe
tively. Asthe perturbation in
reased, the solvers requiredtens to hundreds of se
onds to 
al
ulate a solu-tion. One of the methods, LOQO, does not in-
rease monotoni
ally in 
ost. The initial de
reasein time is likely due to the nature of interior-pointmethods, whi
h tend to perform better when theinitial point is not too 
lose to the solution. Asthe initial quality worsens, we see a general in-
rease the number of iterations. In the 90 per-
ent perturbation 
ase, LOQO appears to invertsome elements of the mesh and must then returnto the feasible region, a

ounting for the spike inthe time.SNOPT and MINOS perform the worst on thistest series. Both are prohibitively expensive; MI-NOS required as mu
h as 20 minutes to solve theproblem with a 90 per
ent perturbation and wasunable to solve the problem with a 99 per
ent per-turbation. SNOPT required 3 hours to solve the99 per
ent perturbation 
ase. The longer runningtimes were expe
ted be
ause these methods useonly �rst-order information and approximate theneeded Hessian matri
es.



4.2 Two-Dimensional Test CasesTo further evaluate the performan
e of these sevensolvers, we analyze their ability to solve two two-dimensional test 
ases. Both test 
ases are gener-ated using the Triangle mesh generation pa
kage[28℄. The �rst test 
ase, ANL, has a 
on
ave geom-etry. The mesh generated by Triangle was modi-�ed by moving the interior verti
es to deliberately
reate poor-quality elements along the boundary.The se
ond test 
ase, Rand, is generated by ran-domly 
hoosing points in the unit square and tri-angulating them using a Delaunay 
riterion. InTable 2, we give the total number of verti
es andelements, VT and E, the number of interior ver-ti
es, VI , and the maximum mean ratio and aver-age mean ratio, MRmax and MRavg for ea
h test
ase. The meshes are shown in Figure 3.Table 2. The size and initial quality of the two-dimensional test 
asesMesh VT E VI MRmax MRavgANL 312 456 184 9.82 1.73Rand 1152 2170 937 32.6 1.84
Figure 3. The two-dimensional test 
ases: ANL(left), Rand (right)The results of running ea
h of the seven opti-mization solvers on the two-dimensional meshesare given in Table 3. For ea
h solver, we reportthe termination status, S, of the solver as an \S"or an \F" for su

eed or fail, respe
tively. If themethod fails, we give the termination message re-ported by the solver. If the method su

eeds, wereport the resulting mesh quality in terms of themaximumand average mean ratio values, MRmax

Table 3. The mesh quality, time, and iteration
ount for the optimization solvers applied to the two-dimensional test 
asesMethod S MRmax MRavg T IANLFeasNewt S 1.62 1.11 1.95 15KNITRO F Trust region radius too smallLANCELOT F No de
rease in 
onstraint violationLOQO S 1.62 1.11 1.59 18FilterSQP S 1.62 1.11 9.10 19SNOPT S 1.62 1.11 257 231MINOS F Problem unbnded or badly s
aledRandFeasNewt S 2.20 1.12 20.0 25KNITRO F Trust region radius too smallLANCELOT F No de
rease in 
onstraint violationLOQO S 2.20 1.12 28.2 33FilterSQP S 2.20 1.12 4918 264SNOPT F Killed after 26 hoursMINOS F Cannot 
al
ulate improving pointand MRavg, respe
tively; the 
ost in se
onds, T ;and the number iterations, I.The quality of the mesh at the optimal solutionfor both test problems is 
onsiderably improved;for ANL, MRmax has been redu
ed from 9.82 to1.62, and MRavg has been redu
ed from 1.73 to1.11. For Rand, MRmax has been redu
ed from32.6 to 2.20, and MRavg has been redu
ed from1.84 to 1.12. On these two problems, the FeasNewtand LOQO solvers are the best performers; theysolve both test problems su

essfully and are 
om-parable in terms of time. FilterSQP, although itsolves both test 
ases, is orders of magnitude moreexpensive than either the FeasNewt or LOQOsolvers. KNITRO, LANCELOT, and MINOS areunable to solve either of the two test problemsand produ
e tangled meshes. On
e an element be-
ame inverted, these algorithms pro
eeded to de-
rease the obje
tive fun
tion to negative in�nity,but never returned to the feasible region. SNOPTsolved only the relatively easy ANL test 
ase butrequired 257 se
onds to do so whereas the othersu

essful methods required at most 10 se
onds.Given the la
k of robustness and expense of KNI-TRO, LANCELOT, SNOPT, and MINOS, we donot 
onsider them further.



4.3 Three-Dimensional Test CasesWe now use the remaining solvers, FeasNewt,LOQO, and FilterSQP, to improve the quality offour tetrahedral meshes generated using the CU-BIT mesh generation pa
kage [4℄. We also reportthe results for the NLCG solver des
ribed in Se
-tion 3. For ea
h test 
ase, we give in Table 4 thetotal number of verti
es and elements, VT and E;the number of interior verti
es, VI ; and the maxi-mum mean ratio and average mean ratio, MRmaxand MRavg. The meshes are shown in Figure 4.Table 4. The size and initial quality of the three-dimensional test 
asesMesh VT E VI MRmax MRavgDu
t 1106 4267 382 3.00 1.26Gear 866 3116 260 2.84 1.37Foam 1337 4847 289 4.06 1.34Hook 1190 4675 400 3.36 1.32As with the two-dimensional 
ases, we report inTable 5 the termination status, �nal mesh quality,time to solution, and iteration 
ount for the three-dimensional 
ases.In all 
ases, the average mean ratio is improvedat the optimal solution, re
e
ting the goal of theobje
tive fun
tion formulation. We note that theimprovement is not as dramati
 as it was in thetwo-dimensional 
ases, be
ause the initial meshquality is good. In three of the four test 
ases,the maximum mean ratio is also improved, eventhough it is not expli
itly the goal of the opti-mization pro
edure; in the Gear test problem itis slightly worsened. All four methods are able tosolve all of the test 
ases; these are, listed in orderfrom fastest to slowest: FeasNewt, LOQO, NLCG,and FilterSQP. The FeasNewt solver is a fa
tor of2.2 to 4.5 times faster than its nearest 
ompeti-tor in all test 
ases. While FilterSQP su

essfullysolved all test 
ases, it is a fa
tor 5.6 to 19 timesslower than FeasNewt.4.4 Convergen
e HistoriesIn many 
ases, the exa
t optimal solution is notrequired from a mesh improvement te
hnique.Rather, a very good solution is desired qui
kly.

Table 5. The results of the optimization solvers onthe three-dimensional test 
asesMethod S MRmax MRavg T IDu
tFeasNewt S 2.92 1.24 14.9 6FilterSQP S 2.92 1.24 282 82LOQO S 2.92 1.24 75.2 24NLCG S 2.92 1.24 67.5 50GearFeasNewt S 3.28 1.33 9.8 5FilterSQP S 3.28 1.33 54.7 21LOQO S 3.28 1.33 21.8 11NLCG S 3.28 1.33 40.1 41FoamFeasNewt S 3.52 1.33 10.9 5FilterSQP S 3.52 1.33 86.2 30LOQO S 3.52 1.33 35.3 17NLCG S 3.52 1.33 76.3 58HookFeasNewt S 2.91 1.30 15.9 5FilterSQP S 2.91 1.30 276 67LOQO S 2.91 1.30 52.6 16NLCG S 2.91 1.30 83.0 62Thus, we now evaluate the 
onvergen
e history ofea
h method to determine the feasibility of earlytermination to redu
e 
omputational 
osts. Thetwo 
hara
teristi
s that would make this possibleare monotoni
 
onvergen
e to the solution and sig-ni�
ant early progress toward the optimal point.We plot the value of the obje
tive fun
tion asa fun
tion of time for ea
h solver on the three-dimensional test 
ases and show the results in Fig-ure 5. Note that the horizontal axis is s
aled tohighlight the early 
onvergen
e behavior of themethods, and the 
omplete time history of someof the methods is not shown.The FeasNewt, FilterSQP, and NLCG solvers all
onverge to the optimal solution monotoni
ally,making them 
andidates for early termination.LOQO does not always 
onverge monotoni
ally asis illustrated by the Du
t, Hook, and Foam test
ases. This nonmonotoni
 behavior is 
aused bythe penalty fun
tion, whi
h allows LOQO to visitpoints far from the solution before 
onverging tothe optimal point. Thus, even though its total
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Figure 5. The 
onvergen
e histories for FeasNewt, FilterSQP, and LOQO on the four tetrahedral mesh test 
asestime to solution as reported in Table 5 is less thanFilterSQP in all 
ases and is less than NLCG inthree 
ases, it typi
ally takes mu
h longer to ap-proa
h the optimal solution. Thus, it is not a good
andidate for early termination.Of the three methods that 
onverge monotoni-
ally, FeasNewt approa
hes the optimal solutionthe qui
kest in all four 
ases. In two of the four
ases, the NLCG method is very 
ompetitive withFeasNewt in terms of how it approa
hes the opti-mal solution, even though it takes mu
h longer to
onverge to the exa
t optimal point. In the other
two 
ases, it takes about twi
e as long to approa
hthe optimal point. FilterSQP takes two to threetimes longer than FeasNewt to approa
h the op-timal point in all 
ases. Furthermore, FilterSQPis not guaranteed to monotoni
ally de
rease theobje
tive fun
tion, even though this behavior wasobserved on the test problems.4.5 S
alabilityTo obtain a sense of how these methods will s
aleas the problem size in
reases, we examine their



performan
e on the Du
t geometry as the numberof elements in
reases. The mesh sizes and qualityinformation are given in Table 6.Table 6. The size and initial quality of a series ofmeshes 
reated on the du
t geometry to test s
ala-bilityMesh VT E VI MRmax MRavgDu
t1 1067 4104 382 2.34 1.21Du
t2 2139 9000 965 3.55 1.21Du
t3 4199 19222 2302 3.29 1.21Du
t4 7297 35045 4480 2.71 1.20Du
t5 13193 65574 8738 4.30 1.19The total time to solution and iteration 
ountsfor the FeasNewt, FilterSQP, LOQO, and NLCGmethods are given in Table 7. A dash entry in-di
ates that the method was unable to solve theproblem in a reasonable amount of time. As theproblem size in
reases, the FeasNewt method is
onsistently the fastest method and maintains anearly 
onstant number of iterations. Ea
h itera-tion be
omes more expensive as the problem sizein
reases, but of all the methods 
onsidered, thismethod's total time to solution grows the mostslowly. Although LOQO and NLCG require aboutthe same amount of time to solve the Du
t1 prob-lem, the NLCG method is more s
alable in thatits time to solution grows more slowly as the theproblem size in
reases. In parti
ular, the Du
t5to Du
t1 ratio for NLCG is 43.8 and for LOQOis 91.8. The FilterSQP method does not performwell as the problem size in
reases, requiring over5 hours to solve the Du
t3 problem. We did notinvestigate its behavior on the Du
t4 and Du
t5problems. 5. CONCLUSIONSWe have 
ondu
ted a series of numeri
al experi-ments to determine whi
h of several sele
ted opti-mizationmethods are most suitable for solving themesh shape quality optimization problem whereall of the verti
es are simultaneously repositionedto improve average quality. We 
ompared eightdi�erent solvers: six state-of-the-art solvers andtwo 
ustom solvers we developed. In Table 8 wesummarize our �ndings in terms of the methods'

robustness, time to solution, 
exibility to be usedwith an early stopping 
riterion, and s
alability.In ea
h 
ategory, we s
ore the methods as ex
el-lent (X), good (G), average (A), or poor (P). Adashed line indi
ates that the method was not an-alyzed for a given 
hara
teristi
.The two methods that performed the best were,not surprisingly, those written spe
i�
ally for themesh quality improvement problem. In parti
u-lar, the 
ustom-developed FeasNewt method is thebest performer in all 
ategories. It solves everytest problem and was 
onsistently the fastest te
h-nique, parti
ularly in three dimensions. It mono-toni
ally 
onverges to a solution and 
an thereforebe used with a 
exible stopping 
riterion. Fur-thermore, it e�e
tively uses a good initial start-ing point and the 
omputational 
ost grows as thequality of the initial mesh degrades. A 
ompletedes
ription of this solver is planned for anotherpaper. Following FeasNewt, the NLCG method isalso 
onsidered to be a top performer. Althoughwe 
ould not test it on the two-dimensional test
ases, it solved every three-dimensional problem,and the method is well suited for qui
kly �nd-ing good solutions. Further, only FeasNewt andNLCG are guaranteed to remain feasible with re-spe
t to the nonlinear 
onstraints in the optimiza-tion problem.The LOQO and FilterSQP methods, although ro-bust, are not as good as either of the other twomethods. LOQO's 
onvergen
e properties, bothas the initial mesh be
omes more diÆ
ult to solveand within a given run, make it an unpredi
tablesolver that 
annot be terminated early. Filter-SQP was observed to 
onverge monotoni
ally butis prohibitively expensive unless early termina-tion is 
onsidered. Both LOQO and FilterSQPwould be more 
ompetitive with NLCG if we wereto remove our relian
e upon AMPL and write
ustom interfa
es. The other four solvers, KNI-TRO, LANCELOT, SNOPT, and MINOS, wereunable to solve one or more of the two-dimensionalproblems; they were not 
onsidered in the three-dimensional test 
ases.Now that promising methods have been identi�edfor solving the mesh shape quality optimizationproblem, a number of interesting extensions to this
omparison 
an be 
onsidered. First, we note thatour tests of the solvers used the mean ratio metri
.Although this represents a typi
al shape metri
, inthe future it will be ne
essary to perform similartests on other shape metri
s, anisotropi
 meshes,other types of mesh quality optimization metri
s,and di�erent obje
tive fun
tions. This 
ompari-son of optimization software pa
kages is not ex-haustive. However, sin
e it appears better to use



Table 7. The time to solution in se
onds, T , and 
ost in iterations, I, for the four solvers as mesh size in theDu
t geometry in
reases FeasNewt FilterSQP LOQO NLCGMesh T I T I T I T IDu
t1 12.2 4 360 96 68.7 20 66.0 48Du
t2 37.1 5 2842 257 181 20 169 51Du
t3 90.6 5 18750 630 807 31 518 64Du
t4 151 4 { { 1777 24 984 67Du
t5 401 5 { { 6309 24 2889 101solvers tailored to the shape optimization problemas opposed to general purpose solvers, in
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